合理的模具結構設計具體有哪些
合理的模具結構設計具體有哪些。模具結構設計主要考慮導向精度合理、沖裁間隙恰當、剛性好,還要考慮盡量采用組合式模具。模架有良好的剛性,不要僅僅滿足強度要求,模板不宜太薄,在可能的情況下盡量增厚,甚至增厚50%。多工位模具不宜僅用2根導柱導向,盡量做到4根導柱導向,這樣導向性能好。因為增加了剛度,保證了凸、凹模間隙均勻,確保凸模和凹模不會發(fā)生碰切現象。
浮動模柄可避免壓力機對模具導向精度的不良影響。凸模夾緊可靠,裝配時要檢查凸模或凹模的軸線對水平面的垂直度以及上下底面之間的平行度。
在冷擠壓時,凸模和凹模的硬度要合適,要充分發(fā)揮強韌化處理對延長壽命的潛力。如W6Mo5Cr4V2鋼冷擠壓凸模,當硬度≥60HRC時可正常使用,壽命為3000~3500件。但如果憑經驗認為硬度低、塑性好,壽命一定延長時就會大失所望,當硬度為57~58HRC擠壓工件時,凸模的工作帶會鐓粗。某廠檢測擠壓第1件以后凸模的工作帶尺寸發(fā)現,鐓粗增大量為0.01~0.04mm。
對于熱擠凹模就不能套用冷擠摸的經驗,當把3Cr2W8V鋼熱擠凹模的硬度值從>40HRC降到37~38HRC時,使用壽命從1000~2000次提高到6000~8000次。
根據經驗,不同的鍛壓設備上的模鍛對鍛模的硬度要求不盡相同,即使在同一種鍛壓設備上的模鍛,鍛不同的產品對模具的硬度要求也不相同。
在鍛件飛邊切除時,凸模底要盡量與鍛件的上側表面相吻合。如鋼絲鉗模鍛件熱切飛邊時,切飛邊凸模底部的凹形要與鋼絲鉗柄部的弧形相吻合,否則在切飛邊過程中,切飛邊凸模易使鍛件向一側翻轉,使凸模和凹模損壞。一般情況下,沖裁間隙放大可以延長切飛邊模壽命。
合理選擇模具材料,根據模具的工作條件、生產批量以及材料本身的強韌性能來選擇模具用材,盡可能選用品質好的鋼材。據有關資料介紹,模具的制造費較高,而材料費用一般僅是模具價格的6%~20%。
對模具材料要進行質量檢測,模塊要符合供貨協(xié)議要求,模塊的化學成份要符合國際上的有關規(guī)定。只有在確信模塊合格的情況下,才能鍛造。大型模塊(100kg以上)采用電渣重熔鋼H13時要確保內部質量,避免可能出現的成份偏析、雜質超標等內部缺陷。要采用超聲波探傷等無損檢測技術檢查,確保每件鍛件內部質量良好,避免可能出現的冶金缺陷,將廢品及早剔除。
合理制定模具鋼的鍛造規(guī)范,根據碳化物偏析對模具壽命的影響,必須限制碳化物的不均勻度,對精密模具和負荷大的細長凸模,必須選用韌性好強度高的模具鋼,碳化物不均勻度控制為不大于3級。Cr12鋼碳化物不均勻度3級要比5級耐用度提高1倍以上。滾絲模的碳化物不均勻度為5~6級時最多滾絲2000件,而碳化物不均勻度提高到1~2級時可滾絲550000件。如果碳化物偏析嚴重,可能引起過熱、過燒、開裂、崩刃、塌陷、拉斷等早期失效現象。帶狀、網狀、大顆粒和大塊堆集的碳化物使制成的模具性能呈各向異性,橫向的強度低,塑性也差。
根據顯微硬度測量結果,碳化物正常分布處為740~760HV,碳化物集中處為920~940HV,碳化物稀少處為610~670HV,在碳化物稀少處易回火過度,使硬度和強度降低,碳化物富集區(qū)往往因回火不足,脆性大,而導致模具鐓粗或斷裂。
通過鍛造能有效改善工具鋼的碳化物偏析,一般鍛造后可降低碳化物偏析2級,最多為3級。最好采用軸向、徑向反復鐓拔,它是將原材料鐓粗后沿斷面中兩個相互垂直的方向反復鐓拔,最后再沿軸向或橫向鍛成,重復一次這一過程就叫做雙十字鐓拔,重復多次即為多次十字鐓拔。而對于直徑小于或等于50mm的高合金鋼,其碳化物不均勻性一般在4級以內,可滿足一般模具使用要求。